# 常用极限

limnnn=1,limnan=1(a>0)\lim\limits_{n\to\infty}\sqrt[n]{n}=1,\lim\limits_{n\to\infty}\sqrt[n]{a}=1(a>0)

limnan+bnn=max(a,b)\lim\limits_{n\to\infty}\sqrt[n]{a^ n+b^n}=max(a,b)

limn0(an+bn+cn3)1n=abc13\lim\limits_{n\to0}(\frac{a^ n+b^n+c^n}{3})^{\frac{1}{n}}=abc^{\frac{1}{3}}

limn(1+1n)n=e\lim\limits_{n\to\infty}(1+\frac{1}{n})^n=e

# 等价无穷小

au1ulnaa^u-1\sim u\ln a

(1+u)a1au(1+u)^a-1\sim au

# 三角公式

积化和

sinAcosB=12(sin(A+B)+sin(AB))\sin A \cos B = \frac{1}{2} (\sin(A + B) + \sin(A - B))

cosAsinB=12(sin(A+B)sin(AB))\cos A \sin B = \frac{1}{2} (\sin(A + B) - \sin(A - B))

cosAcosB=12(cos(A+B)+cos(AB))\cos A \cos B = \frac{1}{2} (\cos(A + B) + \cos(A - B))

sinAsinB=12(cos(AB)cos(A+B))\sin A \sin B = \frac{1}{2} (\cos(A - B) - \cos(A + B))

差化积

sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2 \cos\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right)

sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right)

cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = -2 \sin\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right)

cosA+cosB=2cos(2A+B)cos(2AB)\cos A+\cos B=2\cos(2A+B)\cos(2A−B)

三角函数间的转换

1+tan2(x)=sec2(x)1 + tan^2(x)=sec^2(x)

1+cot2(x)=csc2(x)1+cot⁡^2(x)=csc⁡^2(x)

arctanab1+ab=arctanaarctanb(a0,b0)\arctan\frac{a-b}{1+ab}=\arctan a-\arctan b(a\geq 0, b\geq 0)

arctana+b1ab=arctana+arctanb(0a1,0b1)\arctan \frac{a+b}{1-ab}=\arctan a+\arctan b(0\leq a\leq 1,0\leq b\leq 1)

# 高阶导数

[ln(1+x)](n)=(1)n1(n1)!(1+x)n[\ln(1+x)]^{(n)}=(-1)^{n-1}\frac{(n-1)!}{(1+x)^n}

(1ax+b)(n)=(1)nann!(ax+b)n+1(\frac{1}{ax+b})^{(n)}=\frac{(-1)^n a^n n!}{(ax+b)^{n+1}}

(sinx)(n)=sin(x+nπ2)(sinx)^{(n)}=sin(x+n\cdot\frac{\pi}{2})

(cosx)(x)=cos(x+nπ2)(cosx)^{(x)}=cos(x+n\cdot\frac{\pi}{2})

# Taylor 展开

ex=k=0nxkk!+o(xn)e^x=\sum\limits_{k=0}^{n}\frac{x^k}{k!}+o(x^n)

ln(1+x)=k=1n(1)k1kxk+o(xn)\ln(1+x)=\sum\limits_{k=1}^{n}\frac{(-1)^{k-1}}{k}x^k+o(x^n)

sinx=k=1n(1)k1x2k1(2k1)!+o(x2n)\sin x=\sum\limits_{k=1}^{n}(-1)^{k-1}\frac{x^{2k-1}}{(2k-1)!}+o(x^{2n})

cosx=k=0n(1)kx2k(2k)!+o(x2n+1)\cos x=\sum\limits_{k=0}^{n}(-1)^k\frac{x^{2k}}{(2k)!}+o(x^{2n+1})

11x=k=0nxk+o(xn)\frac{1}{1-x}=\sum\limits_{k=0}^{n}x^k+o(x^n)

# 曲率

y=f(x):y=f(x):

K=y[1+(y2)]3K=\frac{|y''|}{\sqrt{[1+(y'^2)]^3}}

x=f(t),y=g(t):x=f(t),y=g(t):

K=fggf(f2+g2)32K=\frac{|f'g''-g'f''|}{(f'^2+g'^2)^{\frac{3}{2}}}

r=r(θ):r=r(\theta):

K=r2+2r2rr(r2+r2)32K=\frac{|r^2+2r'^2-rr''|}{(r^2+r'^2)^\frac{3}{2}}

曲率半径:R=\frac{1}

# 积分

原函数 积分后的函数
secx\sec x $\ln \sec x+\tan x $
cscx\csc x $\ln \csc x-\cot x $
tanx\tan x $-\ln \cos x $
cotx\cot x $\ln \sin x $
\sqrt \frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}arcsin\frac{x}
\sqrt $\fracx}{2}\sqrt{x2\pm a^2+\fraca2\ln x+\sqrtx2\pm a^2 $
1x2±a2\frac{1}{\sqrt{x^2\pm a^2}} $\ln x+\sqrtx2\pm a^2 $
1(1+x2)32\frac{1}{(1+x^2)^\frac{3}{2}} x1+x2\frac{x}{\sqrt{1+x^2}}
0π2sin2nxdx\int_0^{\frac{\pi}{2}}\sin^{2n}xdx $\frac{(2n-1)}{(2n)}\cdot \frac{\pi}{2} $
0π2sin2n+1xdx\int_0^{\frac{\pi}{2}}\sin^{2n+1}xdx \frac{(2n)!!}

# 微分

原函数 导函数
tanx\tan x sec2x\sec^2 x
cotx\cot x cscx-\csc x
secx\sec x secxtanx\sec x\tan x
cscx\csc x cscxcotx-\csc x\cot x
arcsinx\arcsin x 11x2\frac{1}{\sqrt{1-x^2}}
arccosx\arccos x 11x2-\frac{1}{\sqrt{1-x^2}}
arctanx\arctan x \frac{1}

# 一阶线性微分方程

y+P(x)y=Q(x)y'+P(x)y=Q(x)

y=eP(x)dx[Q(x)eP(x)dxdx+C]y=e^{-\int P(x)dx}[\int Q(x)e^{\int P(x)dx}dx + C]

Bernoulii 方程:

y+P(x)y=Q(x)yny'+P(x)y=Q(x)y^n

左右同除yny^n

# 二阶常系数微分方程

# 齐次

y+ay+by=0λ2+aλ+b=0y''+ay'+by=0\\ \lambda^2+a\lambda+b=0

实根:两个不同的实根 λ1\lambda1λ2\lambda2,则通解为:

y=C1eλ1x+C2eλ2xy= C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}

重根:一个重根 λ\lambda,则通解为:

y=(C1+C2x)eλxy=(C_1 + C_2 x)e^{\lambda x}

复根:两个复根 λ=α±βi\lambda= \alpha \pm \beta i,则通解为:

y=eαx(C1cos(βx)+C2sin(βx))y=e^{\alpha x}(C_1 \cos(\beta x) + C_2 \sin(\beta x))

# 非齐次

y+ay+by=f(x)y'' +ay ′+by=f(x)

如果f(x)=Pm(x)eλxf(x)=P_m(x)e^{\lambda x},则假设

y=xkQm(x)eλxy^*=x^kQ_m(x)e^{\lambda x}

如果 f(x)=eαxPm(x)cosβxf(x)=e^{\alpha x}P_m(x)\cos\beta xf(x)=eαxPm(x)sinβxf(x)=e^{\alpha x}P_m(x)\sin\beta x,则假设

y=xkeαx[Rm(x)cosβx+Tm(x)sinβx]y^*=x^ke^{\alpha x}[R_m(x)\cos\beta x+T_m(x)\sin \beta x]

# Maclaurin 展开

ex=1+x+x22++xnn!+(<x<)e^x=1+x+\frac{x^2}{2}+……+\frac{x^n}{n!}+……(-\infty <x < \infty)

sinx=xx33!+x55!++(1)n1x2n1(2n1)!+(<x<)\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}+……+(-1)^{n-1}\frac{x^{2n-1}}{(2n-1)!}+……(-\infty <x < \infty)

ln(1+x)=xx22+x33+(1)n1xnn+(1<x1)\ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-……+(-1)^{n-1}\frac{x^n}{n}+……({\color{Tan} -1<x\leq 1{\color{Peach} {\color{Peach} } } } )

1x+1=n=0(1)nxn(1<x<1)\frac{1}{x+1}=\sum\limits_{n=0}^{\infty}(-1)^nx^n({\color{Tan} -1<x<1} )

11+x=1+n=1(1)n(2n1)!!(2n)!!xn(1<x1)\frac{1}{\sqrt{1+x}}=1+\sum\limits_{n=1}^{\infty}(-1)^n\frac{(2n-1)!!}{(2n)!!}x^n({\color{Tan} -1<x\leq 1} )

# 积分的奇偶性 + 周期性

0πxf(sinx)dx=π0π2f(sinx)dx=π0π2f(cosx)dx\int_0^\pi xf(sinx)dx=\pi\int_0^{\frac{\pi}{2}}f(sinx)dx=\pi\int_0^{\frac{\pi}{2}}f(cosx)dx

0πf(sinx)dx=20π2f(sinx)dx=20π2f(cosx)dx\int_0^{\pi}f(sinx)dx=2\int_0^{\frac{\pi}{2}}f(sinx)dx=2\int_0^{\frac{\pi}{2}}f(cosx)dx

\int_0^{\pi}f(cos)dx=\left\{\begin{array}{**lr**}2\int_0^{\frac{\pi}{2}}f(cosx)dx & &f偶\\0 & &f奇\end{array}\right.

aaf(x)dx=0a[f(x)+f(x)]dx\int_{-a}^{a}f(x)dx=\int_0^a[f(x)+f(-x)]dx

f(x)f(x) 以 T 为周期,则 $$\int_a{a+T}f(x)dx=\int_0Tf(x)dx$$

更新于

请我喝[茶]~( ̄▽ ̄)~*

Aurijun 微信支付

微信支付

Aurijun 支付宝

支付宝