# 曲线与 x 轴所围的面积

抽出微元\Longrightarrow,其中f(x+dx)=f(x)+f(x)dxf(x+dx)=f(x)+f'(x)dx

dS=12[f(x)+f(x+dx)]dx=12[2f(x)+f(x)dx]dx\Rightarrow dS=\frac{1}{2}[f(x)+f(x+dx)]dx = \frac{1}{2}[2f(x)+f'(x)dx]dx

dSf(x)dx\Rightarrow dS \sim f(x)dx

# 曲线绕 x 轴一周所围图形的侧面积

求出微元ds=1+f(x)dx\Longrightarrow ds = \sqrt{1+f'(x)}dx

圆台面积:$\pi (r_1+r_2) l $

dS=π[f(x)+f(x+dx)]ds=π[2f(x)+f(x)dx]1+f(x)2dx\Rightarrow d_{S\text{侧}}=\pi [f(x)+f(x+dx)]ds=\pi [2f(x)+f'(x)dx]\sqrt{1+f'(x)^2}dx

ds2πf(x)ds\Rightarrow d_{s\text{侧}}\sim 2\pi f(x)\color{red}{ds} 2πf(x)1+f(x)2dx\sim 2\pi f(x)\sqrt{1+f'(x)^2}dx

# 曲线绕 x 轴一周所围图形的体积

圆台体积公式:13πh(r12+r1r2+r22)\frac{1}{3}\pi h(r_1^2+r_1r_2+r_2^2)

dVx=13πdx[f2(x)+f(x)[f(x)+f(x)dx]+[f(x)+f(x)]2]\Rightarrow dV_x=\frac{1}{3}\pi dx[f^2(x)+f(x)[f(x)+f'(x)dx]+[f(x)+f'(x)]^2]

dVxπf2(x)\Rightarrow dV_x\sim \pi f^2(x)\color{red}