旋转曲线的侧面积和体积
曲线与x轴所围的面积
抽出微元\(\Longrightarrow\),其中\(f(x+dx)=f(x)+f'(x)dx\)
\(\Rightarrow dS=\frac{1}{2}[f(x)+f(x+dx)]dx = \frac{1}{2}[2f(x)+f'(x)dx]dx\)
\(\Rightarrow dS \sim f(x)dx\)
曲线绕x轴一周所围图形的侧面积
求出微元\(\Longrightarrow ds = \sqrt{1+f'(x)}dx\)
圆台面积:$(r_1+r_2)l $
\(\Rightarrow d_{S\text{侧}}=\pi [f(x)+f(x+dx)]ds=\pi [2f(x)+f'(x)dx]\sqrt{1+f'(x)^2}dx\)
\(\Rightarrow d_{s\text{侧}}\sim 2\pi f(x)\color{red}{ds}\) \(\sim 2\pi f(x)\sqrt{1+f'(x)^2}dx\)
曲线绕x轴一周所围图形的体积
圆台体积公式:\(\frac{1}{3}\pi h(r_1^2+r_1r_2+r_2^2)\)
\(\Rightarrow dV_x=\frac{1}{3}\pi dx[f^2(x)+f(x)[f(x)+f'(x)dx]+[f(x)+f'(x)]^2]\)
\(\Rightarrow dV_x\sim \pi f^2(x)\color{red}{dx}\)
本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 眨眼的小星星!