一阶微分方程

分离变量

齐次方程解法

形如 \[ y'=f(\frac{a_1x+b_1y+c_1}{a_2x+b_2y+c2}) \]\(c1=c2=0\),就是齐次方程

\(c1,c2\)至少有一个不等于0:

  1. \(a1b1\neq a2b2\),设\(x=u+a,y=v+b\),化成 \[ \frac{dv}{du}=f(\frac{a1u+b1v}{a2u+b2v}) \]

  2. \(a1b1=a2b2\),设\(a1=ka2,b1=kb2,u=a2x+b2y\),化成 \[ \frac{du}{dx}=a2+b2f(\frac{ku+c1}{u+c2}) \] image-20241027114141521

全微分方程

积分因子

对于微分方程 \[ Pdx+Qdy=0 \] 若存在\(\mu(x)\)使\(\mu Pdx+\mu Qdy=0\)为全微分方程,则\(\mu\)为原方程的积分因子

\(\frac{1}{Q}(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x})\)只依赖于x,则 \[ \ln \mu =\int\frac{1}{Q}(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x})dx \]\(\frac{1}{P}(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})\)只依赖于x,则 \[ \ln \mu =\int\frac{1}{P}(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})dx \] image-20241027114242549

高阶微分方程

Euler方程